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Abstract. Spectrum estimation is a problem common to many fields of physics, science, and engi-
neering, and it has thus received a great deal of attention from the Bayesian data analysis commu-
nity. In room acoustics, the modal or frequency response of a room is important for diagnosing and
remedying acoustical defects. The physics of a sound field in a room dictates a model comprised
of exponentially decaying sinusoids. Continuing in the tradition of the seminal work of Bretthorst
and Jaynes, this work contributes an approach to analyzing the modal responses of rooms with a
time-domain model. Room acoustic spectra are constructed of damped sinusoids, and the model-
based approach allows estimation of the number of sinusoids in the signal as well as their frequen-
cies, amplitudes, damping constants, and phase delays. The frequency-amplitude spectrum may be
most useful for characterizing a room, but in some settings the damping constants are of primary
interest. This is the case for measuring the absorptive properties of materials, for example. A fur-
ther challenge of the room acoustic spectrum problem is that modal density increases quadratically
with frequency. At a point called the Schroeder frequency, adjacent modes overlap enough that the
spectrum – particularly when estimated with the discrete Fourier transform – can be treated as a
continuum. The time-domain, model-based approach can resolve overlapping modes and in some
cases be used to estimate the Schroeder frequency. The proposed approach addresses the issue of
filtering and preprocessing in order for the sampling to accurately identify all present room modes
with their quadratically increasing density.
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BAYESIAN MODEL-BASED FRAMEWORK

Spectrum estimation is a problem that is encountered in many disparate scientific disci-
plines. Bayesian inference has been applied to the problem in several of these disciplines,
including chemistry [1, 2], astronomy [3], and signal processing [4]. Bayesian inference
has also been applied to acoustics problems outside the scope of spectrum estimation,
such as coupled volume energy decay analysis [5, 6]. Frequency spectrum estimation is
particularly important in the field of room acoustics. A room behaves as an acoustically
resonant volume in which the resonant frequencies and the bandwidth of the resonance
peaks are determined by the geometry of the room and the composition of the room’s
surfaces. While the traditional frequency-magnitude spectrum is useful to room acous-
tics, this work addresses the spectrum estimation problem using a time-domain model.

A room impulse response can be represented as a sum of exponentially decaying
sinusoids:

γ(t) =
M

∑
i=1

Aie
− 6.9t

Ti cos(2π fit +φi), (1)



with impulse response, γ , number of modes, M, time, t, and parameters amplitude, A,
decay time, T , frequency, f , and phase delay, φ .

Model Selection

The first major strength of this model-based spectrum estimation method is its facility
in estimating the number of modes present in a room impulse response. This estimation
is accomplished using Bayesian model selection. For measured data D and background
information I, the probability of a given model M is given by Bayes’ theorem:

p(M|D, I) =
p(M|I)p(D|M, I)

p(D|I)
, (2)

with prior p(M|I), likelihood p(D|M, I), and evidence p(D|I). The ratio of the posterior
probabilities of two different models is known as the Bayes factor and may be used to
rank those models against each other. By assigning an objective, uniform prior distribu-
tion to the family of models under consideration, the ratio of the posteriors reduces to a
ratio of the model likelihoods:

p(D|Mi, I)
p(D|M j, I)

, (3)

for models i and j.

Parameter Estimation

Another strength of this spectrum estimation method is its ability to estimate the
parameters of interest for the modes present in a room impulse response, specifically
frequency and decay time. For measured data D, model M, and background information
I, the probability of a set of parameters B is similarly given by Bayes’ Theorem:

p(B|D,M, I) =
p(B|M, I)p(D|B,M, I)

p(D|M, I)
, (4)

with prior p(B|M, I), likelihood p(D|B,M, I), and evidence p(D|M, I). Note that the
evidence term in the parameter estimation formulation of Bayes’ theorem is exactly the
same as the likelihood term in the model selection formulation. This equality allows the
evidence calculated in the parameter estimation process to be used to rank competing
models.

The background information I encodes the assertion that the model M fits the mea-
sured data D reasonably well, with a finite residual error

e = D−M. (5)

The finite nature of the residual error implies that the distribution of the error has
a finite but unknown variance. Given this knowledge, application of the principle of



maximum entropy yields a Gaussian likelihood distribution over the residual error. In
this application, the variance term of the Gaussian distribution is a nuisance parameter. In
order to marginalize the variance, a Jeffreys prior [7] is assigned to the variance, and this
prior times the likelihood function is integrated over the variance. This marginalization
yields a Student’s T distribution over E:

L (B)≡ p(D|B,M, I) = Γ

(
K
2

)
(2πE)−K/2

2
, (6)

where Γ(·) is the gamma function, E = e2/2, K is the number of samples in the measured
data, and L (B) represents the likelihood given a set of parameters B.

Nested Sampling

Calculation of the evidence values necessary to perform the model selection is compu-
tationally expensive using traditional Bayesian parameter estimation methods. Skilling’s
nested sampling algorithm [8] provides a more efficient way to calculate the evidence for
a given model while incidentally generating the posterior samples necessary for param-
eter estimation. Nested sampling has also been applied to the coupled volume problem
in acoustics [9].

This specific implementation of nested sampling begins by drawing 100 uncon-
strained, pseudo-random samples from the prior distribution. The likelihood of each
sample is calculated, and the sample with the lowest likelihood is removed from the ini-
tial population and saved into a collection of posterior samples. A parameter is chosen
at random, and a random walk MCMC process is used to explore the prior distribution
in the dimension of the chosen parameter. A new sample is accepted if its likelihood is
greater than or equal to the likelihood constraint. Forty random walk steps are taken, with
the step size tuned at each step to move toward a target acceptance ratio of 50%. The re-
sulting sample is inserted into the initial population to replace the discarded sample. This
exploration process is adapted from Skilling’s toy lighthouse problem implementation
in [10, 192–195].

This process iterates until the likelihood of the new sample is less than 1× 10−10

greater than the likelihood of the previous sample, or until 40000 complete iterations
have occurred.

Approach

This method ultimately strives to obtain from a single room impulse response the
number of modes present and four parameters of interest for each mode. This method
begins by measuring a room’s impulse response using standard techniques [11]. To re-
strict the analysis to frequencies of interest, the impulse response is filtered to isolate
these frequencies. Prior limits are set based on impulse response characteristics. For in-
stance, frequency is limited by the impulse response’s Nyquist frequency, and the decay



time is bounded by values obtained through more broadband decay time measurement
techniques.

The nested sampling is run with the measured data, testing each candidate number
of modes until the accumulated evidence stops increasing. The number of modes with
the highest evidence is chosen as the number of modes present in the impulse response,
and the parameters associated with that number of modes are calculated by finding the
weighted mean of the collected samples over each parameter.

SIMULATED IMPULSE RESPONSES

Methods

The proposed method was self-verified using a simulated impulse response. This im-
pulse response was generated using the time domain model (Equation 1) with uniformly-
distributed random noise added to each time sample. This noise had a mean of zero and
a maximum amplitude of 1% of the maximum amplitude of the signal.

One particular scenario was investigated: an impulse response with three modes, two
closely-spaced modes and one mode well-separated from the other two.

Results

For the case under investigation, the known parameter values, the inferred parameter
values, and the error between these sets is shown in table 1. Figure 1 shows the simu-
lated and inferred impulse responses, the magnitude spectrum of the simulated impulse
response and the inferred frequencies, and the log evidence per mode.

FIGURE 1. Simulated room impulse response with one well-separated mode and two closely-spaced
modes. (a) simulated and inferred time-domain signals; (b) simulated frequency-domain signal with the
inferred frequencies represented by dashed lines; (c) log evidence for each tested mode



TABLE 1. Simulated room impulse response with one well-separated
mode and two closely-spaced modes

Known values Inferred values Error (%)

First mode

Amplitude 0.25 0.248 0.8
Decay time (s) 0.7 0.704 0.6
Frequency (Hz) 100 100 0.0
Phase delay (rad) 0 6.28 0.5

Second mode

Amplitude 0.3 0.298 0.7
Decay time (s) 0.9 0.905 0.6
Frequency (Hz) 300 300 0.0
Phase delay (rad) 0 1.19×10−2 0.2

Third mode

Amplitude 0.1 0.101 1.0
Decay Time (s) 0.9 0.890 1.1
Frequency (Hz) 303 303 0.0
Phase delay (rad) 0 6.24 0.7

MEASURED IMPULSE RESPONSES

Methods

The proposed method was also used to analyze measured impulse responses. The val-
ues inferred in these analyses were compared to values obtained using more traditional
methods.

The first impulse response analyzed was measured in a rectangular chamber with
wooden surfaces. This chamber was 67 cm wide, 51 cm tall, and 192 cm deep. The
source for the impulse response measurement was placed in one corner of the chamber,
and the receiver was placed in a non-adjacent corner. The resulting impulse response
was resampled to a sampling frequency of 1080 Hz and then filtered with a 10th-
order Chebyshev Type II low-pass filter with a stopband edge frequency of 300 Hz and
stopband ripple 40 dB down from the peak passband level to isolate lower frequencies
and help reduce computation time.

Because the chamber was rectangular, its modal frequencies could be estimated using
a solution of the wave equation for sound propagating in a rectangular chamber with
rigid surfaces,

fl,m,n =
c
2

√(
l
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)2

+
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m
Ly

)2

+

(
n
Lz

)2

, (7)

with modal frequency f , dimensions Lx, Ly, and Lz, and modal indexes l, m, and n.
Once the Bayesian analysis was performed on the impulse response obtained from

the rectangular chamber, decay time analysis was performed at the inferred modal



frequencies. Using the same setup and similar atmospheric conditions, the chamber was
excited using sine tones at these inferred frequencies. The sine tones were interrupted
and the slope of the resulting decay curves was used to determine the decay times at the
tested frequencies.

Results

The comparison between the switch-off decay times and the inferred decay times at
various frequencies for the rectangular chamber is shown in table 2. The comparison
between the frequencies predicted using the wave equation and the inferred frequencies
for the rectangular chamber is shown in table 3.

TABLE 2. Rectangular chamber room impulse response
switch-off vs. inferred decay times

Mode Switch-off DT (s) Inferred DT (s) Error (%)

1 0.9108 0.798 12.4
3 1.4649 1.34 8.5
4 0.6667 0.571 14.4

TABLE 3. Rectangular chamber room impulse response predicted vs. inferred
frequencies

Mode Predicted Frequency (Hz) Inferred Frequency (Hz) Error (%)

1 261.8 263.7 0.7
2 178.6 186.6 4.5
3 268.0 274.7 2.5
4 276.6 279.7 1.1

Figure 2 shows the results of the analysis of the rectangular chamber impulse re-
sponse. Part (a) shows the inferred impulse response overlaid on the measured impulse
response. Part (b) shows the magnitude spectrum of the impulse response as a solid line,
the predicted modal frequencies as dotted lines, and the inferred modal frequencies as
a dashed line. Part (c) shows the mean of the log evidence per mode over 16 runs, with
the error bars representing standard deviation.

DISCUSSION AND CONCLUSIONS

The analysis of the simulated impulse response shows that this analysis technique is
internally valid, as the observed errors in the inferred parameter values never exceed
1.1%. The method has no problem detecting and accurately estimating the parameters
of closely-spaced modes, an advantage over peak detection and visual inspection of the
magnitude spectrum.
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FIGURE 2. Measured room impulse response. (a) measured and inferred impulse response in the time
domain; (b) solid – magnitude spectrum, dashed – inferred frequency, dotted – wave equation frequencies;
(c) average of log evidence per mode over 16 runs with standard deviation error bars

Decay times and frequencies in the measured impulse response are estimated within
reasonable error values. Also, the time-domain fit in Figure 2 part (a) and the peak in
log evidence at the fourth mode in Figure 2 part (c) indicate that the nested sampling
converges.

Future work will include measuring impulse responses in non-rectangular spaces in
which the modal frequencies cannot be easily predicted. Other spaces with interesting
geometrical configurations will also be considered.
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