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An important element of architectural acoustic design is the prediction and mitigation of
modal effects. Modal effects can create undesirable aural phenomena, especially in smaller
rooms. The use of Bayesian methods for spectrum analysis was pioneered originally in
the field of nuclear magnetic resonance spectroscopy. A time-domain model may be used
with methods of Bayesian inference to analogously analyze room modes, accounting for fre-
quency, amplitude, damping, and phase. Bayesian model selection can be used to determine
the number of modes present in the signal, while simultaneously estimating the associated
modal parameters. Accuracy of the method is demonstrated using simulated data, address-
ing scenarios like well-spaced modes, overlapping modes, and unevenly damped degenerate
modes. Then, the method’s usefulness is demonstrated by running it against real, measured
impulse responses. Finally, the Bayesian model-based approach is compared to more stan-
dard frequency-domain analyses.

1 INTRODUCTION

This paper describes a method to determine a room’s acoustic modal characteristics using a
time-domain signal model and two levels of Bayesian inference (parameter estimation and model
selection). The method extracts from a single impulse response modal parameters amplitude, decay
time, frequency, and phase delay, as well as the number of modes present in the impulse response.

1.1 Motivation

In architectural acoustics, room modes can be useful or detrimental, depending on context.
Overlapping room modes are responsible for the reverberant response that acousticians generally
find useful and desirable in acoustic spaces; however, if a room is small enough, and if the room’s
surfaces are reflective enough, room modes at frequencies near the lower end of human sensitivity
can become sparse and very noticeable. Recording studio control rooms tend to experience this
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problem due to their small size, and mixing engineers cite low-frequency resonances as a common
source of disturbance.1 For an existing control room, the proposed method could be used to de-
termine the offending modes’ frequencies and decay times, allowing acousticians to recommend
specific diffusive or absorptive surface treatments.

For rectangular rooms, there is an analytical solution to the wave equation allowing the predic-
tion of room modes. However, for non-rectangular rooms (e.g. rooms with non-parallel flat walls
or large curved surfaces), a new analytical solution must be written for each unique geometry. The
proposed method could be used in rooms with non-rectangular shapes to characterize the room’s
modal response.

Finally, the most generally useful application of this method is the ability to extract both
frequency and damping information from a single impulse response. In acoustics, this allows an
acoustician to more completely characterize a room’s acoustical characteristics based on already
established measurement techniques. This method can be applied to other fields in science and
engineering that also require spectrum estimation.

1.2 Literature Review

Research into the application of Bayesian analysis to the problem of characterizing well-
separated, exponentially decaying sinusoids began with Larry Bretthorst’s work in nuclear mag-
netic resonance spectroscopy2,3. Bretthorst’s work showed that the parameters of noisy signals can
be accurately estimated, and that the number of signals present in noisy data can be accurately
estimated using Bayesian inference.

Andrieu and Doucet4 used a time-domain, model-based approach to characterize noisy, un-
damped sinusoids using a reversible-jump Markov-chain Monte Carlo (RJMCMC) method to nu-
merically integrate the posterior. This method proved to work well with very noisy data and closely
spaced frequencies, where it performed better than classical methods.

The method described in this paper builds on these previous works by performing parame-
ter estimation and model selection on the set of damped sinusoids that make up room impulse
responses, using nested sampling to integrate the posterior and a Metropolis-Hastings update.

2 THEORY

2.1 Time-domain Model

For the purposes of this work, a room impulse response is modeled as a sum of exponentially
decaying sinusoids, represented mathematically:

γ(t) =
M∑
i=1

Aie
6.9t
Ti cos(2πfi + φi). (1)

This is a parametric model with parameters amplitude (A), reverberation time (T ), frequency (f ),
and phase delay (φ); signal γ, and time t. This represents a family of models with model M
containing M modes.

2.2 Bayesian Inference

This project is concerned with two levels of Bayesian inference: parameter estimation and
model selection. Both levels are based on Bayes’ theorem. For parameter estimation, Bayes’



theorem is written:

p(Θ|D,M, I) =
p(Θ|M, I)p(D|Θ,M, I)

p(D|M, I)
, (2)

where Θ is the collection of parameters {A1, T1, f1, φ1, ...An, Tn, fn, φn}, D is the measured data,
M is the model (number of modes), and I represents background knowledge. The prior distri-
bution, p(Θ|M, I), encodes what is known about the parameters before testing. The likelihood
function, p(D|Θ,M, I), encodes updated knowledge about the parameters given measured data.
The marginal likelihood (or evidence), p(D|M, I) serves to normalize the posterior distribution,
and also to rank competing models. Finally, the posterior distribution, p(Θ|D,M, I), represents
the updated knowledge of the parameters given the prior distribution, the likelihood function, and
the evidence.

Once the posterior distribution has been estimated, any moments of interest can be calculated.
For instance, the mean of the distribution in each dimension yields the estimated value of the
parameter in that dimension. Similarly, the variance (and more usefully, the standard deviation)
can be calculated for each dimension to quantify the uncertainty of the parameter estimates.

Model selection is performed by estimating the evidence for each of a set of competing, candi-
date modes. Qualitatively, the preferred model is the simplest one that fully describes the measured
data. Quantitatively, the preferred model is the one with the highest evidence.

2.3 Nested Sampling

This project uses nested sampling5 to implement Bayesian parameter estimation and model
selection. Nested sampling is a method to accumulate the evidence of a model and, as a by-product,
to generate posterior samples.

The process begins by drawing a population of random samples from the prior distribution.
The likelihood (L) of these samples is evaluated. The lowest likelihood value in this population
is set as the new likelihood threshold, L∗. This lowest-likelihood sample is saved and discarded
from the population. It is replaced by another sample (with a likelihood L > L∗), generated using
Metropolis-Hastings sampling of the posterior distribution.

At every iteration of this process, the width of the portion of the prior mass that contains
samples with likelihood greater than L∗ is estimated. The prior mass is a one-dimensional repre-
sentation of the prior distribution, and the portion at iteration i is roughly estimated as

Xi = e−
i
N , (3)

for N objects. The width of the portion of the prior mass associated with a sample is defined as

wi = Xi−1 −Xi. (4)

The accumulated evidence is also calculated at each iteration. The total evidence at the end of the
process is

Z =
K∑
i=1

wiLi, (5)

for K samples and evidence Z. The nested sampling process for a given model is deemed to be
complete when the change in likelihood from one step to the next drops below a threshold value.
Parameters are determined by finding the mean of the discarded samples weighted by the posterior.



2.4 Approach

The approach taken by this work is as follows. A room’s impulse response is measured using
standard techniques. To avoid excessive computation time, the impulse response is filtered to
select only certain frequencies. Limits on the prior distribution are determined from the impulse
response’s characteristics: amplitude is limited by the maximum absolute value of the impulse
response, decay time is limited by the length of the impulse response, frequency is limited by the
measurement’s Nyquist frequency, and phase delay is limited to 2π due to its circularity.

With the measured data and prior limits in place, the nested sampling algorithm is run with
the assumption that only one mode is present in the signal. It is run again for two modes, and this
process continues until the accumulated evidence stops increasing. The number of modes with
the highest accumulated evidence is chosen as the correct number of modes, and the parameters
associated with that posterior distribution are calculated.

3 SIMULATED IMPULSE RESPONSES

3.1 Methods

The first tests performed with the proposed method were done using simulated impulse re-
sponses generated using the model in Equation (1). The impulse responses were generated using
parameters chosen to simulate certain situations, such as well-separated modes and degenerate
modes. Once the impulse responses were generated, a small amount of Gaussian noise was added
to simulate a realistic measurement.

3.2 Results

The simulated impulse response test shown is of a case with two well-separated modes. Table
1 shows the results of this test, including the known parameters, the inferred parameters, and the
observed error as a percentage of the known parameters. As a note, phase delay is circular, i.e. a
phase delay of 2π is equivalent to a phase delay of 0. This circularity is considered in calculating
the error in the phase delay. Figure 1 shows the time-domain and frequency-domain results of the
test, as well as a graphical representation of the model-selection process.

4 MEASURED IMPULSE RESPONSES

4.1 Methods

Once the simulated impulse response tests proved successful and the internal validity of the
method was verified, tests using real, measured impulse responses began. The RIR shown here was
measured in a scale-model transmission loss measurement chamber about 67 cm wide, 51 cm tall,
and 87 cm deep. The walls of the chamber are made of layered cement board, foam, and wood.
The source was placed in one corner of the chamber, and the receiver was placed in another corner.

In order to isolate just a few of the lower modes in the chamber, the impulse response was
resampled to 862 Hz, then filtered with a 10th-order Chebyshev Type II low-pass filter with a
stopband edge frequency of 359 Hz and stopband ripple 40 dB down from the peak passband level.
The resampling removes superfluous data points and serves to significantly speed up computation
time. This particular filter has a steep roll-off, ideal for isolating a few low-frequency modes.



4.2 Results

The results of the measured impulse response test are shown in table 2. The time- and
frequency-domain results, as well as the model selection process are shown in figure 2. In the
frequency-domain plot, the lowest inferred mode is not shown.

5 DISCUSSION

The results shown in this article demonstrate that the proposed method can accurately analyze
the modal characteristics of a room, even in the presence of closely-spaced modes. The tests
involving simulated impulse responses, in which the correct parameters are known, show that
the method is able to accurately determine the frequency of the present modes, and it is able to
determine the other parameters of interest to within 5% of the actual value, given a signal-to-noise
ratio of 40 dB.

The model selection process allows the method to determine the number of modes present
in a RIR. More complete models accumulate greater evidence, while overly-complex models are
automatically penalized.

6 CONCLUSIONS AND FUTURE WORK

From results seen so far, Bayesian room-acoustic modal analysis shows great promise as a
method for characterizing the modal characteristics of rooms. However, there is still work to be
done.

A strategy will be developed to assess an entire room impulse response. This strategy will
likely include applying a bank of bandpass filters to the impulse response, then analyzing each of
the filtered signals. Such an approach would avoid the increases in computation time brought on
by increasing modal density and could be further streamlined using parallel computing.
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Table 1 – Simulated RIR: Two well-separated modes

Known values Inferred values Error (%)
First mode
Amplitude 0.3 0.306 2.0
Decay time (s) 0.2 0.195 2.5
Frequency (Hz) 40 40.0 0.0
Phase delay (rad) 0 6.28 0.5
Second mode
Amplitude 0.4 0.402 0.5
Decay time (s) 0.5 0.496 0.8
Frequency (Hz) 100 100 0.0
Phase delay (rad) 0 6.28 0.5



Table 2 – Measured RIR: Transmission loss chamber

Mean Standard deviation
First mode
Amplitude 9.61× 10−4 9.86× 10−6

Decay time (s) 0.910 0.0075
Frequency (Hz) 173 0.0078
Phase delay (rad) 4.99 0.0070
Second mode
Amplitude 7.41× 10−6 4.52× 10−6

Decay time (s) 0.609 0.149
Frequency (Hz) 64.6 28.0
Phase delay (rad) 5.40 0.405
Third mode
Amplitude 0.0015 2.60× 10−5

Decay time (s) 0.276 0.0047
Frequency (Hz) 348 0.0572
Phase delay (rad) 1.57 0.0213
Fourth mode
Amplitude 0.0032 2.20× 10−5

Decay time (s) 0.381 0.0029
Frequency (Hz) 312 0.0076
Phase delay (rad) 3.98 0.0040
Fifth mode
Amplitude 0.0018 3.81× 10−5

Decay time (s) 0.670 0.0085
Frequency (Hz) 338 0.0134
Phase delay (rad) 0.506 0.0140
Sixth mode
Amplitude 0.0016 1.10× 10−5

Decay time (s) 0.793 0.0072
Frequency (Hz) 262 0.0031
Phase delay (rad) 4.60 0.0053
Seventh mode
Amplitude 0.0013 2.21× 10−5

Decay time (s) 0.446 0.0085
Frequency (Hz) 342 0.0562
Phase delay (rad) 3.19 0.0250
Eighth mode
Amplitude 0.0033 1.76× 10−5

Decay time (s) 0.550 0.0042
Frequency (Hz) 336 0.0112
Phase delay (rad) 4.57 0.0081



Fig. 1 – Simulated RIR: Two well-separated modes. (a) simulated and inferred time-domain sig-
nals; (b) simulated frequency-domain signal with the inferred frequencies represented by
dashed lines; (c) log evidence for each tested mode

Fig. 2 – Measured RIR: Transmission loss chamber. (a) measured and inferred time-domain sig-
nals; (b) measured frequency-domain signal with the inferred frequencies represented by
dashed lines; (c) log evidence for each tested mode


