
Parallelized Nested Sampling
R. Wesley Henderson and Paul M. Goggans

Department of Electrical Engineering, University of Mississippi

Abstract. One of the important advantages of nested sampling as an MCMC technique is its ability to draw representative
samples from multimodal distributions and distributions with other degeneracies. This coverage is accomplished by maintain-
ing a number of so-called live samples within a likelihood constraint. In usual practice, at each step, only the sample with the
least likelihood is discarded from this set of live samples and replaced. In [1], Skilling shows that for a given number of live
samples, discarding only one sample yields the highest precision in estimation of the log-evidence. However, if we increase
the number of live samples, more samples can be discarded at once while still maintaining the same precision.

For computer code running only serially, this modification would considerably increase the wall clock time necessary
to reach convergence. However, if we use a computer with parallel processing capabilities, and we write our code to take
advantage of this parallelism to replace multiple samples concurrently, the performance penalty can be eliminated entirely and
possibly reversed. In this case, we must use the more general equation in [1] for computing the expectation of the shrinkage
distribution:

E[− log t] = (Nr− r+1)−1 +(Nr− r+2)−1 + · · ·+N−1
r ,

for shrinkage t with Nr live samples and r samples discarded at each iteration. The equation for the variance

Var(− log t) = (Nr− r+1)−2 +(Nr− r+2)−2 + · · ·+N−2
r

is used to find the appropriate number of live samples Nr to use with r > 1 to match the variance achieved with N1 live samples
and r = 1.

In this paper, we show that by replacing multiple discarded samples in parallel, we are able to achieve a more thorough
sampling of the constrained prior distribution, reduce runtime, and increase precision.

Keywords: Nested Sampling, Parallel Computing, MCMC
PACS: 02.50.Tt

INTRODUCTION

The application of Bayesian inference to engineering problems often involves distributions that are multimodal,
awkwardly shaped, or both. Many Markov chain Monte Carlo (MCMC) methods are ill-suited for dealing with these
troublesome distributions; however, certain MCMC techniques perform acceptably under these conditions. One such
technique is nested sampling [2].

Nested sampling is primarily a technique to estimate Bayesian evidence. For a set of hypotheses represented by
parameters B and observed data A, the evidence, Z, is the sum of the product of the prior distribution,

π(B) = p(B|I), (1)

and likelihood function,
L(B) ∝ p(A|B, I), (2)

for all possible hypotheses. If the parameters are continuous, this sum becomes an integral,

Z =
∫

π(B)L(B)dB. (3)

It is convenient to assume that the prior and likelihood have been reparameterized so that π(B) is uniform on the unit
hypercube.

This integral is usually impossible to evaluate analytically and difficult to evaluate numerically. Nested sampling
addresses this issue by recasting the integral in (3) as a more tractable one-dimensional integral. Instead of considering
the prior distribution directly, nested sampling instead deals with the prior mass, defined as

X(λ ) =
∫

L(B)>λ

π(B)dB. (4)



In (4), the λ parameter represents a likelihood threshold (or constraint), and X(λ ) is the proportion of the prior
distribution that lies within this likelihood constraint. The likelihood can be written as a function of the prior mass,
and simply returns the likelihood constraint:

L(X(λ )) = λ . (5)

In this way, the evidence can be computed as

Z =
∫ 1

0
L(X)dX . (6)

The likelihood for a particular hypothesis can be determined exactly; however, the prior mass contained in L(B)> λ

is impossible to compute analytically. To get around this limitation, the integral in (6) is computed numerically and
becomes

Z =
m

∑
i=1

wiLi, (7)

in which the change in the abscissa is expressed as wi = Xi−Xi−1. Nested sampling proceeds by computing each
element of the sum in (7) for monotonically increasing likelihood constraints.

While the prior mass within a likelihood constraint cannot be exactly determined, the shrinkage t, i.e., the ratio of
the prior mass within λi to the prior mass within λi−1, is known to be beta-distributed,

t ∼ Beta(N,r), (8)

with parameters N and r. Nested sampling maintains a population of N so-called live samples uniformly distributed
within the likelihood constraint, and at step i the r samples with the lowest likelihood in the live sample population are
collected and discarded. The likelihood constraint λ at step i is set to the greatest likelihood in the set of r discarded
samples. The geometric mean of the shrinkage distribution serves as an adequate estimate of the actual shrinkage.
Since we are often more interested in the log-evidence than the evidence, we want to compute the log of the geometric
mean:

logGt = E[log t], (9)

E[− log t] =
r−1

∑
n=0

1
Nr−n

. (10)

THEORY

If the nested sampling process proceeds with too few live samples and the likelihood function is multimodal, those live
samples can get effectively “locked out” of portions of the likelihood-constrained prior that are important for accurate
numerical estimation of (6). A large value of N, i.e., a large population of likelihood-constrained samples, provides
robustness when dealing with multimodal likelihood functions. While a sufficiently large N ensures virtually complete
coverage of all modes, it also increases the number of iterations necessary to reach convergence. Taking another look
at (10), we see that as the number of live samples N is increased, the shrinkage of the prior mass between iterations
becomes smaller, implying that more iterations will be required before the region of the prior mass containing most of
the posterior distribution is reached.

This paper proposes to parallelize nested sampling in order to gain the benefits of a large population of live samples
while minimizing the time necessary to complete the resultant nested sampling run. While the usual approach with
nested sampling is to discard and replace only one sample at each iteration (r = 1), larger values of r can be used.
This idea was proposed previously by Burkoff, et al. [3]. This paper’s primary contribution is to examine the effect of
concurrently replacing multiple samples on the variance of the log-evidence estimate and on the total execution time
of nested sampling.

From (10), simply increasing r leads to a greater mean of the log of the shrinkage distribution, giving fewer steps to
reach convergence. However, the variance of the log of the shrinkage distribution [1],

Var(− log t) = (Nr− r+1)−2 +(N− r+2)−2 + · · ·+N−2 =
r−1

∑
n=0

(
1

Nr−n

)2

, (11)

also increases with r. Greater variance in the shrinkage distribution leads to less precision in the evidence value
estimate, so we need to find a way to tune the value of N such that the variance remains constant with increased r.



Scaling the Number of Live Samples

The precision in the estimation of the evidence is unchanged if the following relationship is satisfied:

Var(− log t1) = Var(− log tr). (12)

In (12) and in the following equations, the subscripts on t and N correspond to the value of r. Substituting (11) into
(12) and solving for N1 yields

N1 =
Nr√

1+∑
r−1
n=1

(
Nr

Nr−n

)2
. (13)

If we assert that the total number of live samples is always much greater than the number of samples discarded and
replaced, i.e. Nr >> r−1, (13) reduces to

N1 ≈
Nr√

r
. (14)

Therefore, to maintain variance as seen in the {N,r = 1} case while increasing r, the number of live samples must be
scaled as

Nr =
√

rN1. (15)

Returning to the mean, recall that

E[− log t1] =
1

N1
≈
√

r
Nr

, (16)

and applying our assumption that Nr >> r−1 gives

E[− log tr] =
1
Nr

+
r−1

∑
n=1

1
Nr−n

≈ r
Nr

. (17)

The ratio of the means is then
E[− log tr]
E[− log t1]

=
√

r, (18)

and the mean for the case with r 6= 1 is
E[− log tr] =

√
r E[− log t1]. (19)

Ultimately, we find that if we increase the value of r and increase the value of N to maintain the same variance, we can
achieve a greater shrinkage between iterations compared to the r = 1 case.

MCMC Calls

A common stopping criterion for nested sampling is when the number of iterations i becomes greater than the
information H times the number of live samples N. A scaling constant can be used to ensure the desired compression
is acheived. Adapting this criterion to the case in which r 6= 1, we have

ri > HNr =
√

rHN1. (20)

From the inequality in (20), we can see that over the course of the nested sampling run, we will need to replace
at least

√
rHN1 samples using an MCMC method. Due to the nature of nested sampling, the vast majority of the

total execution time of any nested sampling implementation is spent in MCMC calls; therefore, the amount of time
necessary to complete a nested sampling run is strongly correlated with the number of MCMC calls required. The
execution time t is then bounded as

Time
{

HN1√
r

}
≤ t ≤ Time

{√
rHN1

}
. (21)



IMPLEMENTATION

To test this idea, we use a C++ implementation of nested sampling using Galilean Monte Carlo (GMC). GCC 4.7.3
was used to compile the code, and the C++11 standard’s [4] implementation of threading was used to run multiple
GMC instances at once.

Various modifications must be made to the standard nested sampling algorithm in order to discard and replace
multiple samples at once. Algorithm 1 details the modified routine used in our implementation.

Algorithm 1 Nested Sampling

Draw θ 1,θ 2, · · · ,θ N from the prior
Calculate likelihood Li for each sample.
logZ←−∞

logX0← E[− log t]
for i← 1,M do

PartialSort(θθθ ,r) . Use the partial sort algorithm to sort at least the first r samples by log-likelihood.
L ← Lr . Set the likelihood constraint as the r-th log-likelihood value.
logXi← logXi−E[− log t]
wi← log(exp(Xi−1)− exp(Xi)) . Increment the prior width.
logZ← logZ +L wi . Increment the log-evidence.
j(1,··· ,r) ∼U(r,N) . Choose r random integer indexes j from a uniform distribution.
Declare r threads.
for k← 1,r do

Start thread k.
θk← MCMC(θ j[k],L ) . Use MCMC to replace θk with new sample from L -constrained prior.

end for
Block main thread until child threads are finished.

end for

Nested sampling requires the r live samples with the lowest likelihood to be discarded and replaced. When r = 1, this
can be accomplished by simply finding the minimum of the likelihood values in the live sample population. However,
when r > 1, a more sophisticated minimization algorithm is required. Our implementation uses a so-called “partial”
quicksort [5] routine. This routine proceeds like normal quicksort until at least the first r values in the list are sorted,
at which point the routine ends. This method of partially sorting the samples provides a performance increase over the
brute-force method of finding multiple minimums or complete sorting.

The idea of Galilean Monte Carlo is explained in [1] and [6]. As a brief overview, GMC evolves a sample with M
parameters by treating it as a particle in motion, where the sample’s parameter values are analogous to the particle’s
Cartesian coordinates in RM . As the particle encounters boundaries (i.e., equal-likelihood contours), it specularly
reflects off the boundaries. The ultimate goal of this motion is to explore the likelihood-constrained parameter space
thoroughly enough to come to an end point that is independent of the starting position while also maintaining detailed
balance.

Two of the challenges typically encountered when implementing GMC are finding a useful time step value and
dealing with significantly non-spherical likelihood contours. Our implementation deals with the time step issue by
tuning the time step using the initial particle velocity such that the particle can make about five moves from boundary
to boundary. We address the issue of encountering a potentially non-spherical distribution by scaling the initial velocity
with a so-called “Galilean semi-metric” [1].

Computational Overhead

In this implementation, there are several potential sources of overhead. These include

• spawning and killing threads,
• the partial sort routine,
• and the possibility that r is greater than the number of CPU cores available.



TABLE 1. Example results

N r Mean logZ Stdev logZ Mean time (s)

20 1 -46.3 1.447 1.88
28 2 -42.6 1.385 1.80
40 4 -43.5 1.312 2.02
57 8 -43.6 3.367 2.32

200 1 -42.0 1.179 16.7
280 2 -42.5 0.892 17.8
400 4 -42.5 0.813 19.6

The last item in that list can be mitigated by ensuring that r is not set to be greater than the number of CPU cores and
that the nested sampling program is the only thing running on the computer.

EXAMPLE

We test our new method using a simple example inspired by an example employed by Skilling [2]. This example uses
a 10-dimensional Gaussian distribution for the likelihood function, and a uniform prior distribution on (−1,1). The
log-likelihood is defined as

logL =−∑
10
i=1(θi−µi)

2

2σ2 , (22)

with µi = 0 and σ = 0.01.
We explore several combinations of N and r values, and run the nested sampling routine 10 times with that

configuration. Table 1 shows the sample mean and standard deviation for the log-evidence over these runs, as well
as the mean execution time for the runs.

DISCUSSION AND CONCLUSIONS

These tests are run in two sets, the first starting with N = 20 and the second starting with N = 200. As r increases, N
is scaled according to (15). Table 1 shows that for all but one case the standard deviation in the log-evidence slightly
decreases as r and N are increased. This trend supports our contention that scaling N according to (15) allows for
parallel computation without sacrificing precision. In fact, the decreasing trend in standard deviation coupled with the
negligible change in run time suggest that this technique can be used to achieve more precision in the evidence estimate
without increasing run time. Also, by increasing the number of live samples, the nested sampling routine should be
able to more completely sample from multimodal distributions with no additional run time.

In the case in which N = 57 and r = 8, our assertion that Nr >> r− 1 is no longer very accurate; thus, scaling N
using (15) is possibly no longer sufficient to maintain the same variance in shrinkage distribution.

The time per run stays about the same with each comparable configuration, and as r and N increase, we see that the
run time is far below the worst case as described in (21). While these results do not confirm our contention that this
method would reduce the overall run-time for nested sampling, we think that future implementations with the goal
of further reducing overhead might see significant reductions in run-time. The test case explored here involves a very
simple likelihood function, and as a result, it is possible that the time required to compute the likelihood is eclipsed
by the time required to spawn and kill computational threads. This being the case, a more computationally complex
likelihood function may see a greater reduction in run time using this method.



ACKNOWLEDGMENTS

This work was supported by a grant from the U.S. Department of Transportation, Research and Innovative Technology
Administration, administered by the National Center for Intermodal Transportation for Economic Competitiveness
(NCITEC) at Mississippi State University.

REFERENCES

1. J. Skilling, AIP Conference Proceedings 1443, 145 – 156 (2012), ISSN 0094243X.
2. J. Skilling, Bayesian Analysis 1, 833–860 (2006).
3. N. S. Burkoff, C. Várnai, S. A. Wells, and D. L. Wild, Biophysical journal 102, 878–886 (2012).
4. ISO, ISO/IEC 14882:2011 Information technology — Programming languages — C++, International Organization for

Standardization, Geneva, Switzerland, 2012.
5. C. A. Hoare, The Computer Journal 5, 10–16 (1962).
6. P. M. Goggans, R. W. Henderson, and N. Xiang, “Using nested sampling with Galilean Monte Carlo for model comparison

problems in acoustics,” in Proceedings of Meetings on Acoustics, 2013, vol. 19, pp. 38–45.


