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Introduction

Nested sampling's precision is limited by N.

Increasing N requires more computation.

Concurrently-run, independent nested sampling results can be
combined to increase the effective value of N.

@ Several examples demonstrate this technique’s utility.
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© Bayesian inference and nested sampling
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Parameter estimation and model selection

Parameter estimation
Pr(D|©, M)Pr(O| M)

Pr(@|D, M) = =T
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Parameter estimation and model selection

Parameter estimation
Pr(D|©, M)Pr(O| M)

Pr(@|D, M) = =T

Abbreviations
Pr(@|D, M) = 5(O) Pr(D|O, M) = ¥ (O)
Pr(O|M) = 7(O) Pr(DIM)=ZF
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Parameter estimation and model selection

Parameter estimation

Pr(D|©, M)Pr(O| M)

Pr(@|D, M) = =T

Abbreviations

Pr(@|D, M) = P(O) Pr(D|O, M) = Z(O)
Pr(O|M) = z(O) Pr(D|M)=Z

Model selection

Pr(M|D) « Pr(D|M)Pr(M)

v
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Model selection

Model posterior ratio
Pr(M,|D) Pr(D|M,)Pr(M,)

Pr (M,|D) Pr(D|M,)Pr(M,)
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Model selection

Model posterior ratio
Pr(M,|D) Pr(D|M,)Pr(M,)

Pr (M,|D) Pr(D|M,)Pr(M,)

Evidence integral

Pr(D|M) = / Pr(D|O, M)Pr(O|M)dO
(¢]
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Nested sampling

Prior mass

X(L) = / 7(©)dO
{(0:2(@)>L}
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Nested sampling

Prior mass

X(L) = / 7(©)dO
{(0:2(@)>L}

Alternate evidence integral

1
f?f=/ L(X)dX
0
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Estimating the prior mass

For a set of parameters @, the likelihood can be computed exactly.
Prior mass, however, generally must be estimated.
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Estimating the prior mass

For a set of parameters @, the likelihood can be computed exactly.
Prior mass, however, generally must be estimated.

Shrinkage

t Xi
T Xi—l
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Estimating the prior mass

For a set of parameters @, the likelihood can be computed exactly.

Prior mass, however, generally must be estimated.

Shrinkage

t Xi
T Xi—l

Shrinkage distribution

t; ~ Beta(V, 1)
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Using the prior mass estimate
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Using the prior mass estimate

Estimating evidence with quadrature

m
Zx ) (X - X)L
i=1

1

7 UNIVERSITY:
MISSISSIPPI

=] 5 = E PRENGe

Henderson and Goggans Parallel Nested Sampling



Using the prior mass estimate

Estimating evidence with quadrature

m
Zx ) (X -X)L
i=1

1

Uncertainty in evidence estimate

exp (i H/N)

= UNTVERSITY

MISSISSIPPI

Henderson and Goggans Parallel Nested Sampling 2015-07-22, Clarkson 9 /37



Using the prior mass estimate

Estimating evidence with quadrature

m
Zx ) (X -X)L
i=1

1

Uncertainty in evidence estimate

exp <i H/N)

Larger N gives a smaller uncertainty in the evidence estimate. Raising N
requires more computation time. Unless we can combine samples from
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© Combining independent chains
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Combining independent chains — general case

General case: M ordered sets of discarded samples with associated prior
mass X

1 _ 1 1 1
X —{Xl,Xz,n-,XQl}

2 _ 2 2 2
x> ={x3 X3 X3}
M _ M M M
XM= (XM X X
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Combining independent chains — simplest case

Simplest case has two sets of one discarded sample each.

X'={x}
X?={xt}
Combined set is
X2 = {21747}

What is the distribution of the shrinkage from the larger member to the
smaller member of X'2?
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Combining independent chains — shrinkage

The shrinkage ¢ is defined

For the first sample,

In our example,
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Combining independent chains — highest order statistic

For a set with n members i.i.d. as f(x) with CDFs F(x), the density of the
ith order statistic is

n!
15,09 = G =/ OF I = Feor™

In our example,

F5 () =2f (1 = F(x)]

[, =NxN""F () =xV
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Combining independent chains — highest order statistic

For a set with n members i.i.d. as f(x) with CDFs F(x), the density of the
ith order statistic is

n!
15,09 = G =/ OF I = Feor™

In our example,

F5 () =2f (1 = F(x)]

[, =NxN""F () =xV

Sx o) =2Nx*N"!
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Generalization

@ Show empirically that, in general, shrinkage in combined set is
distributed as Beta(N X M, 1)
@ Procedure

» Generate 32 sets of 10,000 shrinkage samples from Beta(100, 1).

» Get prior mass values from cumulative product of shrinkage samples in
each set.

» Combine sets of prior mass samples, then sort by prior mass.

Compute actual shrinkage between each consecutive pair of samples.

e 1 1
» Compare sample mean of log? with & and w47

v
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Generalization results

4 =1/100 = 0.01
—4
e = 1/3200 = 3.125 % 10

Log geometric mean of combined shrinkage samples:
3.200x 107* +4.146 x 107

Relative error with 1 : 96 80%

%
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Implementation

Many ways to implement:

@ Concurrent independent nested sampling runs using multiple
supercomputer nodes, processor cores, GPU cores, etc.

@ Concurrent or non-concurrent independent NS runs by different users,
later combined to improve precision

@ If original evidence estimate is not precise enough, subsequent NS
runs can be used to improve precision
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Advantages

@ Runs are independent (i.e., no communication is required), so the
speed-up is nearly ideal.

@ Posterior distributions with multiple high-probability modes can be
sampled effectively.

@ Precision can be improved with subsequent runs.
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Examples

o Eggcrate likelihood function
@ Modified lighthouse problem

@ Sum of sinusoidal signals in noise
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Nested sampling implementation details

@ Evidence is estimated by sampling shrinkage distribution instead of
using geometric mean

@ Log-evidence error bars are the standard deviations of the
log-evidence samples
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Eggcrate

Prior

1 2
(@) = (ﬁ) 10,1071 (91) 110,107] (®2)
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Eggcrate

Prior
1 2
7(0@) = <m) T10.1021 (©1) V0,101 (©2)
Likelihood
0, 0,\]°
Z(O) =exp{ |2+cos > cos >
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Eggcrate

Prior
1 2
n(0) = (m) 10,1071 (91) 110,107] (92)
Likelihood
{pres(3)=(3)] )
Z(O)=exps |2+cos| — Jcos| =
2 2
Posterior
5
(ﬁ)z eXp { [2 + COS (%) COoS (%):I } “[0’10”](61)“[0’10”](62)
7= 235.88 )
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Eggcrate parameters

e N=20
o M =32
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Eggcrate results: log-posterior and histogram

0 5 10 15 20 25 30

log Z = 235.1 +1.336

Compare the above value with the value from Feroz, et al., 2009
computed using standard quadrature: 235.88. V
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Lighthouse problem
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Lighthouse problem

Prior

Pr (aj) = (1/200)]][_100’100] (aj)
Pr (B;) = (1/100)1;9 1001 (B;)
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Lighthouse problem

Prior

Pr (aj) = (1/200)1][_100’100] (aj)
Pr (8;) = (1/100)1;9 10; (8;)

Original likelihood

Z(0) =Pr (x;|a;. ;) =

T (ﬂjz + (i - “1)2)
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Lighthouse problem extension

New likelihood for one observation

Z(0) =Pr (x|, p) = ZA
=

2
B + (xi —

Henderson and Goggans Parallel Nested Sampling
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Lighthouse problem extension

New likelihood for one observation
B;
<ﬂ‘12 + (xk - aj)2>

Z(0) =Pr (x|, p) = ZA
j=1

New likelihood for multiple observations

K J .
52(@)=Pr(x|a,ﬂ)=H2Aj 5 ﬁj 2
k=1 j=1 n(ﬁj + (xk_aj) )
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Lighthouse problem parameters

@ 1000 observations of 2 lighthouses
o N =40
o M=4

Table: Lighthouse parameters

joA e B
1 05 -100 1
2 05 10.0 1
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Lighthouse results

— 4000
115 13500

= 11 13000

(0]

£1.05

S 12500
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§ 1 2000
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a 0.9 1000
0.85 500

0.8 0

-10 -5 0 5 10
Position on shore («)
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Lighthouse results

Table: Lighthouse problem results

J (logZ) Stdev(logZ)
1 —12680 1.160
2  -9254 1.107
3 -9260 1.445
4 -9300 1.377
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Sinusoidal signals in noise

Signal model: sum of sinusoidal signals corrupted by additive white
Gaussian noise (AWGN)

7
s(t) = 2 A cos (w;t) + B;sin (w;1)
=

d(t) = s)+ n()
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Sinusoidal signals in noise

Joint prior

(@) = <m> H“[ 10,101 (47) T=10.101 (B;) Tos1241 (@)
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Sinusoidal signals in noise

Joint prior

n(0) = <m> H Ti-1001 (45) V10,101 (B;) Vo512 (@)

For observed time series d (tk) such that 1 <k < K,

Z(0@) = <\/21_M> exp {— [; (s (1) —d (tk))2] /(202)}
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Sinusoidal signals in noise
Test signal parameters:

e J=2

o f, =512 samples/s
e K =1000

e 62 =001

e N=25

o M=4

Table: Sinusoidal signal parameters

Jj A B

1 10 00 68«

2 00 1.0 160z
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Sinusoidal signals in noise — truncated signal plot

2 T T T T
—Data
- - -Inferred|

Signal
o

0 0.02 0.04 0.06 0.08 0.1

Time (s)
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Sinusoidal signals in noise — results

Table: Signal problem results

J (logZ) Stdev(logZ)

1 2546 1.174
2 5537 1.349
3 —=5835 1.568
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Conclusion

@ Combining the results of independent nested sampling runs decreases
the shrinkage between consecutive samples.

@ This is demonstrated using an analytical example for the simplest
case and a numerical test for a more general case.

@ This technique is effective for determining the evidence in several
example problems, including for distributions with several prominent
modes.

o Simple, effective, extensible.
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