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NESTED SAMPLING IN ACOUSTICS

In the domain of acoustics, many problems can be solved effectively through the judicious use of
Bayesian inference. Examples of such problems include multiple decay slope analysis [1, 2], room acoustics
modal analysis [3], and estimation of acoustic parameters in porous materials [4]. This paper will take modal
analysis as an example to discuss the use of nested sampling and related techniques in acoustic applications.

The acoustical signature of a room is represented by the room’s acoustic impulse response. This impulse
response is dependent on the room’s modal characteristics, determined by the room’s geometry and the
reflective characteristics of the room’s surfaces. The geometry of the room determines the frequencies of the
room’s resonant modes, while the surface characteristics determine the decay times and amplitudes of these
modes.

The room impulse response can be modeled as a sum of decaying sinusoids:

γ(t)=
K∑

i=1
exp(−6.9t/τi) [ai cos(2π f i t)+bi sin(2π f i t)] . (1)

Each individual decaying sinusoid corresponds to a resonant mode in the room.
Two levels of Bayesian inference are used to perform room mode analysis: model comparison and

parameter estimation. Model comparison allows the number of modes present to be inferred. Measured data
are modeled with different numbers of modes, and these competing models are ranked using Bayesian
evidence. Once a model is selected, parameter estimation is performed to estimate the values of the model
parameters (amplitudes, decay times, and frequencies).

Various methods exist for performing both levels of inference; however, the potentially large number of
parameters present in this problem indicates that a method that elegantly deals with high dimensionality
would be ideal. Nested sampling [5, 6, 7] is such a method. Nested sampling not only deals robustly with a
large number of parameters, but it also provides a straightforward method for calculating Bayesian evidence
needed for model comparison. Nested sampling has been used in this context in previous work [3].

Nested sampling (Algorithm 1) begins by drawing a population of samples from the unconstrained prior
distribution. In this case, the model is reparameterized such that its prior distribution is uniform on the unit
hypercube. The likelihood values of these samples are evaluated, and the sample with the lowest likelihood is
discarded into a separate collection of samples. The likelihood of this discarded sample is used as a likelihood
constraint. The discarded sample is replaced by sampling from the prior distribution constrained by the
likelihood constraint. Any method that generates independent samples from the constrained prior
distribution may be used to replace the discarded sample; however, a Markov-Chain Monte Carlo (MCMC)
process is generally used for this purpose.

Algorithm 1 Nested Sampling
Draw N samples θ1,θ2, · · · ,θN from the uniform prior distribution
Calculate likelihood Li for each sample.
Z ← 0 ! Initialize evidence at 0
X0 ← 1 ! Initialize prior mass at 1
for i ← 1, M do

L ∗ ← min(L ) ! Minimum likelihood becomes likelihood constraint
Xi ← exp(−i/N)
wi ← Xi−1 − Xi ! Prior mass width
Z ← Z+L ∗wi
φi ← θ∗ ! Discard lowest-likelihood sample and save in separate array
Choose j from uniform distribution of integers on [1,∗)∪ (∗, N] ! Pick a random index
θ∗ ← MCMC(θ j,L ∗) ! Replace discarded sample using MCMC

end for

As the nested sampling process iterates, the prior mass at each step is calculated. The prior mass is
equal to the integral of the constrained prior distribution over the parameters. Also at each iteration, the
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contribution of the sample to the evidence is calculated as the product of the change in prior mass and the
likelihood constraint. The nested sampling process continues until the desired degree of convergence is
reached. After completion of the nested sampling algorithm, the values of the model parameters can be
estimated by finding the weighted mean of the discarded samples with respect to the parameters.

A significant challenge to effectively implementing nested sampling lies in choosing a robust method for
drawing independent samples from the constrained prior distribution. The remainder of this paper will
describe two choices for fulfilling this role: random walk MCMC [8] and a newer Monte Carlo method,
Galilean Monte Carlo [9].

RANDOM-WALK MARKOV CHAIN MONTE CARLO

A random-walk implementation [10] (Algorithm 2) of Metropolis Hastings MCMC is used in [3] to
generate new prior samples in the nested sampling process. The MCMC process uses a randomly chosen
surviving sample from the working population of samples to begin the chain. For the first step, a single
parameter is chosen at random to vary. This parameter is increased or decreased by a value drawn from a
uniform distribution on [−0.1,0.1]. If the likelihood of the sample with the varied parameter value is greater
than the likelihood constraint, the new sample is accepted. If the likelihood of the sample is less than the
likelihood constraint, the new sample is rejected, and the previous chain step is copied into the current chain
position. At each iteration, the total numbers of proposed moves accepted and rejected are compared. If there
are more moves accepted than rejected, the step size is decreased. If more moves are rejected than accepted,
the step size is increased. A parameter is chosen at random once again, and the process is repeated until a
predetermined number of elements have been added to the chain. The final chain element is returned as the
new sample.

Random walk is straightforward and a computationally inexpensive way to generate a new sample.
However, as the size of the parameter space increases, it has an increasingly difficult time fully exploring the
the prior distribution constrained by the likelihood. In this case the final chain step may not be independent
of the initial point so that the the method fails to provide an independent sample from the constrained prior
as required by nested sampling. This disadvantage becomes especially apparent as the number of parameters
becomes large (such as in this room mode analysis problem when there are many modes) and results in poor
estimates for the evidence and the parameter values. This leads us to search for a more robust method.

GALILEAN MONTE CARLO

Galielan Monte Carlo [9] is an MCMC method developed by John Skilling, the author of the original
nested sampling algorithm [5]. This method addresses the disadvantages of random walk MCMC listed
previously: the constrained prior can be explored thoroughly, and the method is well-suited to
many-dimensional distributions.

Similarly to random walk, the Galilean Monte Carlo algorithm (Algorithm 3) begins with a randomly
selected surviving sample from the working population. This sample is treated as a particle, with the
sample’s parameter values denoting the particle’s position, x. The particle’s velocity is initialized as

v=Sr, (2)

where r is a vector with values drawn from Normal(0,I) and S is a semimetric matrix that conditions the
velocity in a useful fashion.

A particularly useful way to define S is as follows:

SSt ≈ (−∇∇ logL)−1, (3)

where ∇∇ logL is the Hessian (curvature) with respect to the parameters of the log-likelihood function, and, if
the likelihood function is a multivariate Gaussian, is also the negative inverse of the covariance matrix.
Using this matrix to initialize the velocity causes Galilean MC to view the constrained space as a
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Algorithm 2 Random Walk
function RANDOMWALKMC(x,L ∗)

N ← 41 ! Number of chain steps
L ← length(x)
a ← 0 ! Number of acceptances
r ← 0 ! Number of rejections
mc← x ! First element of chain is initial sample
for i ← 2, N do

j ∼ Uniform(1,L) ! Integers only. Pick random index of sample vector to vary
z ∼ Uniform(−0.1,0.1) ! Step size
y←mc ! Initialize current chain step with previous step
y j ← z+mc j
L ← logL(y)
if L >L ∗ then

a ← a+1 ! Increment number of acceptances
mc← y

else
r ← r+1 ! Increment number of rejections

end if
if a > r then

z ← z×exp(1/a) ! If acceptance ratio > 50%, shrink step size
else if a < r then

z ← z/exp(1/r) ! If acceptance ratio < 50%, increase step size
end if

end for
return mc

end function
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Algorithm 3 Galilean Monte Carlo
function GMC(x,L ∗)

τ← 1
S← (−∇∇logL(x+ [some perturbation]))−1/2

r∼ Normal(0,I) ! r is same length as x
v←Sr ! Initial velocity
Adjust τ such that the first movement of x is inside boundaries.
for i ← 1,100 do

x′ ← x+τv ! Calculate position after proceeding
L ′ ← logL(x′) ! Determine log-likelihood at new position
if x′ is outside prior boundaries OR L ′ ≤L ∗ then

if x′ is outside prior boundaries then
g← Unit vector normal to boundary

else if L ′ ≤L ∗ then
g←∇logL(x′)

end if
v′ ← v−2SStg gtv

gtSStg ! Calculate specular reflection velocity
x′′ ← x+τv+τv′

L ′′ ← logL(x′′)
if x′′ is outside prior boundaries or L ′′ ≤L ∗ then

x′ ← x−τv ! Try reversing the original direction
x← x′ ! Set as new position
v←−v ! Set as new velocity

else ! If x′′ is OK...
x← x′′

v← v′

end if
else

x← x′ ! Proceed to new position
accepti ← 1 ! Acknowledge that new point was accepted

end if
if i > 20 then

accept_ratio ←∑i
j=i−20 accepti/20

end if
if accept_ratio ≤ 0 then

accept_ratio ← 1/20
end if
τ← τ

(
accept_ratio

0.9

)(1/20)

end for
end function

Goggans et al.

Proceedings of Meetings on Acoustics, Vol. 19, 055089 (2013)                                                                                                                                    Page 5



hypersphere, helping to achieve even coverage of the space, even if the space has awkwardly-shaped
boundaries. This definition yields

S≈ (−∇∇ logL)−1/2. (4)

In this particular problem, an analytic evaluation of the Hessian is impractical, and finite-difference
approximations are both computationally expensive and inadequate. However, clever use of conjugate
gradient methods as described in [11] can produce a useful value for S with minimal computational cost. In
order to define S in such a way as to maintain detailed balance throughout the motion of the particle, it
should not be calculated at the initial position of the particle; however, to be most useful, it should be
calculated at a point within the same likelihood mode as the particle. Such a position can be determined by
moving the particle one step with a random velocity not equal to v and ensuring that the resultant point is
within the likelihood and prior boundaries.

With the initial position and velocity determined, the particle can begin its motion. The basic idea is that
the particle moves about the prior space constrained by the likelihood and specularly reflects off of the
likelihood or prior boundaries whenever it strikes them. The equation describing the particle’s initial step is

x′ = x+τv, (5)

where τ is the time step and x′ is the particle’s new position, assuming it does not strike a boundary. The
time step τ is set at the beginning of the process so that a step of the particle is on the same order of
magnitude as the size of the space inside the boundaries. τ may be adjusted throughout the process to
maintain a certain acceptance ratio. When a proposed particle position x′ lies outside of the likelihood
constraint, the gradient of the likelihood is calculated at that point,

g=∇logL(x′), (6)

indicating the correct adjustment for the velocity so that the chain particle reflects back inside the volume
where the likelihood constraint is satisfied. If the proposed particle instead lies outside of the prior
distribution’s boundaries, the gradient is simply defined as the vector normal to the prior boundary. In both
cases, the reflection follows the equation

x′′ = x+τv+τv′ (7)

with

v′ = v−2SStg
gtv

gtSStg
(8)

and reflected position x′′.
Occasionally, the shape of the likelihood boundary can cause the reflected position, x′′, to lie outside of

the likelihood boundaries. In this case, the motion of the particle is reversed from its initial position, yielding

x′ = x−τv. (9)

Once a particle position that satisfies all prior and likelihood requirements is found, it is accepted as the new
position. The particle moves a predetermined number of times, and the final position is used as the new
sample for nested sampling.

CONCLUSION

Room mode analysis presents an interesting challenge to Bayesian inference with nested sampling. The
large number of parameters involved in the analysis of rooms with many modes precludes use of more
traditional random-walk Monte Carlo and motivates use of a more robust method to explore the prior
distribution. Galilean Monte Carlo presents an alternative that shows promise in dealing with the high
dimensionality of room mode analysis. Preliminary work indicates that Galilean Monte Carlo can produce
results superior to random walk in room mode analyses involving many modes. More work is needed to refine
our implementation of the algorithm, and our final conclusions will be presented at the meeting in Montreal.
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